
© 2017 Contact Technology Labs, Inc. All Right Reserved Page 1

Interactive Routing

How to create a cloud contact center with NoACD/NoIVR
technologies

White Paper

By Nikolay Anisimov

March 15, 2017

Executive Summary
In this whitepaper we present a patent-pending technology for developing contact centers in cloud
environments. The keystone of this technology is the creation of a Contact Center Model (CCM) that could
be transformed, in a straightforward manner, into executable logic of cloud-based applications. The contact
center model is a collection of interoperable models, such as a call model and agent model, but covering all
functionalities of contact centers, such as interaction processing, routing, self-service, agent and customer
management.

More specifically, we suggest contact center formalism (CCF) and a corresponding programming
framework for the creation and execution of contact center applications, comprising all logic of interaction
processing. CCF allows us to describe a structure of CCM at an ontological level by defining the main
concepts, relationships and behavior of all contact center components, such as customers, their
interactions, agents, routing strategies, campaigns, etc. Moreover CCF enables one to specify actual
contact center configurations and represent real-time operations in a contact center.

CCF is a formalism built as a combination of finite state machines, labeled property graphs, and dynamic
operations. One of the main advantages of CCF is that it is ideal for the representation of relationships
between contact center entities such as customer interactions and agents, agents and their skills,
customers and their needs. For instance CCF enables one to specify different types of interaction routing,
including routing based on agents’ statistics, skills, organizational structures, customer properties, and
many others.

The detailed description of the technology is contained in the corresponding technical report. We also
demonstrate the approach with prototype IntRo implemented in AWS with a Neo4j graph database for
model layers and an AWS Lambda service for functional microservices.

© 2017 Contact Technology Labs, Inc. All Right Reserved Page 2

Introduction

Virtually all businesses, of all sizes, who deal
with customers ought to have a multi-channel
customer service. In today’s highly competitive
business environment, quality of customer
service can often become a critical
differentiator. Unfortunately, not all businesses
can afford dedicated customer services for
several reasons.

On-premise contact centers are very expensive
as they require special equipment and software
as well as fully trained personnel both for
creating
applications and
providing proper
maintenance.

Introducing
hosted contact
centers with
cloud computing
has improved this
situation to some
extent, but it is
still faced with
additional
difficulties, such
as complexity of
contact center
software. It turns
out that moving
existing contact center software to the cloud
requires a substantial redesign, predominantly
related to providing such infrastructure
properties as scalability, reliability and
multitenancy. To our knowledge, despite
enormous ongoing efforts, none of all current
providers have successively coped with these
tasks so far. As a result, considerable effort has
been focused on these non-functional
requirements, at the expense of contact center
functionality. Therefore, contact center
software is still too expensive and complicated
for usage and not readily affordable for the
majority of businesses.

At the same time, over the last few years we
have witnessed a new long-awaited wave of
advanced cloud technologies related to
microservice architectures and serverless

approaches to the creation of cloud
applications, such as Amazon Lambda service.
These technologies automatically provide all
needed cloud infrastructure, including
reliability and scalability, offering an
opportunity for developers to focus only on the
business logic of their applications.

It may, however, come as a surprise to discover
that this approach creates a new problem. The
new bottleneck pops up when developers are
faced with need to implement the pure logic of
contact center applications. A number of
questions arise, such as how to arrange a

structure of
application, how
to define an

interaction
processing and
routing logic in
particular, how to
manage agents
and other
resources, what

programming
language to use?
To answer these
and other
questions, we
need a new
approach to create
contact center

infrastructure and applications.

In this paper we suggest a new model-driven
approach to the creation of contact center
software. The approach supposes the creation
of well-defined models for main components,
and processes of contact centers that could be
straightforwardly transformed into executable
application logic for different cloud platforms.

General picture

The high-level view of the contact center
environment is presented in Figure 1. A contact
center infrastructure is built as a set of
microservices that work with a single contact
center model (CCM). CCM is a central
component containing all information about a
contact center structure, its static
configuration, and operational context.

Persistency layer (distributed database)

Contact Center Model

Operational layer

Configuration layer

Ontology layer

Micro
Service:

Interaction
Service

Micro
Service:
Routing
Service

Micro
Service:
Agent

Service

Micro
Service:

Self
Service

Micro
Service:
Admin
Service

Micro
Service:

Supervisor
Service

...

Figure 1: Microservice architecture of contact center

© 2017 Contact Technology Labs, Inc. All Right Reserved Page 3

Each microservice implements a self-contained
portion of contact center functionality. For
example, an interaction service is responsible
for receiving customer interactions and further
communication with customers via these
interactions. Another example of a
microservice is an agent service that is
responsible for manipulations with agents and
their statuses.

What is a contact center model?

CCM is the component containing a strict
definition of an entire contact center structure
and behavior, in
abstract terms,
independent to any
particular
implementation
environment. CCM
could be perceived as
an expansion and
generalization of the
well-known call
model and agent model towards capturing all
other functionalities of contact centers. For
instance, CCM should cover such important
functionalities as interaction routing, self-
service, dialog management, campaign
management, reporting, etc.

CCM comprises three layers – operational,
configuration and ontological. An operational
layer is a layer where such entities as customer
interactions, agents, and campaigns live and
evolve in real-time. The main elements here
are entities and relationships between entities
which reflect actual relationships between
customers, customer interactions, agents and
other resources of the contact center.

A configuration layer contains static
information about the contact center
infrastructure, including the particular
configuration of agents, their skills and other
properties, knowledge base, etc.

An ontological level comprises contact center
ontology (CCO), an ontological model that
contains high-level knowledge about the
structure (schema) of the contact center. More
specifically, CCO contains knowledge about the

main concepts of the contact center (e.g.
interaction, agent, skill, campaign, knowledge
article) and relationships between them. CCO
also contains inference rules for specifying the
evolution of the model in time. For example,
routing of customer interactions is expressed
as inference rules that create new matching
relationships between these interactions and
appropriate agents based on interaction and
agents’ properties.

Metaphorically, CCO is a genotype of a contact
center. It contains all information about the
structure of contact center entities, their

relationships, and
how the contact
center will evolve in
time. The main
advantage of CCO is
that it is not only a

declarative
specification, but at
the same time it is

executable. CCO enables the automation of the
process of creation configuration and
operation.

CCF: Main formalism

As main contact center formalism (CCF) for
representation of CCM models of all layers, we
use a combination of a labelled property graph
(LPG) with final state machines (FSM). LPG is
the model of a directed graph where each node
and edge is equipped with properties and
labels. Nodes specify entities of a contact
center and edges represent the relationship
between entities. LPG is a powerful and simple
formalism with a sound, intuitive meaning
thanks to good graphical representation. At the
same time, it is a completely strict formal
model treatable by computer programs. LPG is
supported by several graph-oriented NoSQL
databases. The main advantage of LPG is
explicit support of the notion of relationship. A
relationship is a key concept in the contact
center model. Indeed, the principal
relationships are relationships between
customer interactions and agents, as well as
other resources in a contact center.
Establishing these relationships is a key

Metaphorically, contact center

ontology is a genotype of a

contact center.

© 2017 Contact Technology Labs, Inc. All Right Reserved Page 4

mission of contact centers. To accomplish a
mission, other relationships are used, such as
relations between agents and their skills,
customers and their needs and capabilities,
contact center resources, and other metadata.

Some properties of nodes and relationships of
LPG could be states of state machines
associated with them. These state machines
govern the dynamic evolution of the system.

What are novelties?

The model-driven approach to the creation of
contact centers has numerical advantages.
Below we consider the most impressive ones.
First we explain why we characterize the
technology as “NoACD” and “NoIVR”.

Routing: Why NoACD?

Clearly this term NoACD relates to interaction
routing. Routing logic is defined at the CCO
level as a collection of routing strategies. It is a
part of a contact center application and
common for all interactions and agents related
to the application.

In short NoACD stands for “Not only ACD”. In
greater detail, this technology allows you to use
not only standard types of routing such as skill-
based and ACD-based routing, but many others.
Moreover it provides an opportunity to create
your own custom types of routing, taking into
consideration your specific business needs.

Models of routing comprise models of
customer interactions and agents, as well as
models of establishing matching relationships
between them. All known types of interaction
routing, such as routing based on agent skills,
statistics, cost and values, are naturally
specified by routing models. Moreover, other
more sophisticated types of routing could also
be easily implemented. For example, the
combination of different routing types in one
strategy, as well as using escalation between
strategies, allows for the creation of
sophisticated and optimal interaction
processing within the contact center.

Figure 2 illustrates the use of LPG for
representing a simple skill-based routing type.

AgentIxn

Skill
{ name:"Spanish"}

MATCHED

SPEAKS_LANGUAGE HAS_SKILL

Figure 2: Simple skill-based routing

There are three instances - interaction, agent
and skill types. The skill instance represents a
configuration entity with the name “Spanish”.
The agent has the skill corresponding to their
ability to speak Spanish. This fact is specified
by the relationship HAS_SKILL. On the other
side, an interaction represents a customer who
can speak Spanish. This fact is specified by the
relationship SPEAKS_LANGUAGE. A skill-based
routing strategy finds that there is a common
language and creates the relationship
MATCHED between the interaction and the
agent. The routing inference rule is a routing
logic and is a part of CCO.

Dialogs: Why NoIVR?

Again, in short, NoIVR could be expanded as
“Not only IVR”. However, in a broader sense, it
means that IVR functionality will be changed
dramatically.

Routing of customer interactions require a
certain amount of metadata about these
interactions and the customers. Collecting this
missing metadata could be accomplished by
carrying on conversations with customers.
These conversations are generated on-the-fly
and executed with the aid of dialog
management models. The system determines
what data is needed for routing and generates
and executes a corresponding dialog with a
customer.

In the above example, in Figure 2, the
interaction has the relationship
SPEAKS_LANGUAGE. However, initially, this
relationship does not exist and needs to be
created as a result of a conversation with a
customer. In accordance with CCO, the system
creates a dynamic dialog and executes it with

© 2017 Contact Technology Labs, Inc. All Right Reserved Page 5

the aid of the corresponding media channel.
When the language is determined, the
corresponding relationship is created in the
model and the routing service is triggered.

The main advantage of this approach is that
only that data which is relevant for routing is
collected.

Another advantage is that dialog is media
independent. A generated dialog is extracted
from CCM and expressed in an abstract and
media-independent format and is transformed
into executable dialog with a media-specific
format. For example, if the media type is voice,
or text chat, then an abstract dialog is
converted into a sequence of questions and
answers (aka slots). Actual rendering of
executable dialog is performed within a
corresponding media channel.

Conversation with a customer is also used in
self-service with the aid of a self-service model
that describes a knowledge base and the
interactive navigation within the knowledge
base.

True omnichannel

Notice CCM is media agnostic and could be
successively used in omnichannel contact
centers. Indeed, from a technical perspective,
an omnichannel contact center supposes a
uniform processing of interactions for all
media channels.

The concept of the omnichannel contact center
emerged in response to the need to reduce the
complexity of interaction processing, making
them uniform for all channels.

Media independence in interaction processing
enables a flexible usage of media channels,
including a parallel media channel, and a
smooth transition between channels. The latter
enables you to start processing a customer
interaction through one media channel, and
complete it through another one.

Media channels are connected to interaction
processing through relevant microservices,
such as an interaction microservice.

How it works

Now creation of a contact center is easy. First
we should define ontology of a contact center.
More strictly, we will need to specify main
concepts such as customer interactions, agents,
their properties and relationships, routing
logic, etc. To accomplish this task, we could use
a corresponding framework with an
administrator desktop. The predefined set of
out-of-box ontology elements could help in
performing this task.

Then we should create a configuration of our
contact center. For example, if a CCO defines a
concept of agents’ skills, we will need to specify
a concrete set of skills for our contact centers.
Other contact centers will have their own set of
agents’ skills. The configuration could also be
defined with the aid of the framework and
administrator desktop.

Configuration also involves connecting to
media channels.

When ontology and configuration is defined,
the system is ready for operation. Operation of
a contact center is where a dynamic part of
CCM comes to life. Customer interactions enter
the system and modify it. Agents change their
statuses and also change the system. Execution
of dialogs and routing of interactions and
assignment of them to agents are also a part of
contact center operation.

Born in cloud

There are different ways to access the cloud. A
contact center created on premise could be
moved to the cloud, but with considerable
difficulty (if not impossible) as it requires
serious architectural redesign. Even if a contact
center were born in the cloud, it does not mean
that it will survive in the cloud as it requires
complex system architecture with cloud-
specific features such as scalability, reliability,
and multi-tenancy. In our approach, however, a
contact center is initially conceived in the cloud
and gains its cloud birth-marks from the
beginning. All non-functional and cloud-
oriented features are the responsibility of a
particular cloud infrastructure, leaving us a
creation of pure contact center application

© 2017 Contact Technology Labs, Inc. All Right Reserved Page 6

logic. However, this logic is embodied in the
form of the contact center model.

Prototype

This document contains the description of a
prototype called IntRo. The prototype contains
CCM with a sophisticated skill-based routing
and simple pull-based interaction assignment.
The model layers are implemented as a graph
database Neo4j that is deployed in the Amazon
Web Services (AWS) cloud.

Figure 3 demonstrates a CCM graph of a simple
contact center application for a pull-based
interaction assignment. The graph contains
elements of all tree model layers. The
ontological layer comprises classes IXN,
AGENTS, and MATCHED along with their
properties. The configuration layer contains an
agent instance (node in green). The operational
layer has five interaction instances (nodes in
gray). All interactions and the agent are
connected by relationships MATCHED, saying
that the agent could pull one of several of these
interactions for handling.

Agent, interaction and routing services are
implemented as an AWS Lambda service with
API Gateway. IntRo comprises such media
channels as SMS and voice from Twilio, web
form and a web chat.

The prototype also uses a universal desktop for
agent, supervisor and administrator. The

snapshot of the user desktop is presented in
Figure 4.

Conclusion

In this whitepaper, we have presented a new
technology for the creation of contact centers
in a cloud environment. The technology
comprises the following components:

 Formal model based on CCF to specify
contact center ontology and
configuration, including a set of out-of-
box models.

 Framework for creation of CCMs for
concrete contact centers.

 Universal desktop enabling access to
contact center activities by users in
different roles, such as agents,
supervisors, and administrators.

 Execution environment governing
operation of CCM in real time,
comprising model layers and
microservices.

Based on this technology, you can define your
own contact center model that fits your
business needs, select or create an optimal
routing strategy, specify a configuration of your
contact center, and deploy it in an executable
cloud environment.

The detailed description of the technology is
contained in the corresponding technical
report and demonstrated in the prototype
IntRo.

Figure 3: CCM graph of simple contact center application (Neo4j snapshot)

© 2017 Contact Technology Labs, Inc. All Right Reserved Page 7

Figure 4: IntRo universal desktop (supervisor view)

About author

Nikolay Anisimov, Ph.D., is a computer scientist with a strong academic background. He is
an industry veteran with twenty years’ experience in contact center technologies, is the
author of numerous patents, technical and research papers, articles in industry journals
and whitepapers. Nikolay has worked for Genesys Telecommunication Labs, Alcatel-
Lucent, Front Range Solutions, Five9, Aspect Software, and Bright Pattern, Inc. He is a co-
founder of Contact Technology Labs, Inc.
You can contact Nikolay at Email: anisimov@computer.org
His LinkedIn profile: https://www.linkedin.com/in/nikolayanisimov

About Contact Technology Labs.

Contact Technology Labs, Inc. is a privately held, California-based company that performs advanced research
in the area of contact center technologies and related fields. The main goal of the research is the development
of a contact center of a new generation based on a model-driven approach and fully suitable for deployment
in a cloud computing environment. The company also does consulting work to solve various practical
problems related (but not limited) to contact center modeling and simulations, interaction routing,
algorithms, outbound dialing, self-service, cloud computing, artificial intelligence, machine learning, natural
language processing, and data science.
For more about Contact Technology Labs, visit: http://www.contacttechnologylabs.com

Address of this paper:
http://fiztech-usa.net/anisimov/papers/Interactive%20Routing-WP.pdf

mailto:anisimov@computer.org
https://www.linkedin.com/in/nikolayanisimov
http://www.contacttechnologylabs.com/
http://fiztech-usa.net/anisimov/papers/Interactive%20Routing-WPv031.pdf

